library(effects)x1 <- predictorEffect("x6", model)plot(x1)x2 <- predictorEffect("x2", model) plot(x2, main="model COVID 19",xlab="X2", ylab="x") #single plotplot(allEffects(model)) #all p...
Friday, December 18, 2020
model summary in R
# check that model is good fit or notwith(model, cbind(res.deviance = deviance, df = df.residual, p = pchisq(deviance, df.residual, lower.tail=FALSE)))## odds ratios and 95% CI ***********exp(cbind(OR = coef(model), confint(model)))# MORE SUMMARIES ###########################################anova(model) ...
Poisson lognormal regression model in R

library(PLNmodels)library(ggplot2)library(corrplot)Y=read.csv(choose.files())X=read.csv(choose.files())c=list(Y,X)names(c) <- c("output", "input")d <- prepare_data(c$output, c$input)model <- PLN(Abundance ~ LANE_WIDTH ...
p value for any statistical model using R

#2 tailed z testz<- coef(model)/standard_error(model)p<- (1-pnorm(abs(z),0,1))*2p #pva...
Friday, November 13, 2020
Beta Regression Model
library(betareg)a <- read.csv(choose.files())# beta regression modelsummary(betareg(P_SPEEDING_ADJ ~ log(AVG_AADT), data=...
Poisson Model
# Step 1 - understand data# Load datap <- read.csv(file.choose())head(p)# STEP 2- EFA(exploratory factor analysis)#summary of variablessummary(p)#variancevar(p)# Dependent variable plothist(p$SPEEDING_CRASH, main = "Histogram of Speeding Crash", xlab = "Speeding Crash Number", ylab = "Frequency")#STEP 3- Poisson regression modelmodel...
Probit Model
require(aod)require(ggplot2)mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")## convert rank to a factor (categorical variable)mydata$rank <- factor(mydata$rank)## view first few rowshead(mydata)summary(mydata)xtabs(~rank + admit, data = mydata) #myprobit <- glm(admit ~ gre + gpa + rank, family = binomial(link = "probit"), ...
Logistic Model
#Coded by Tawkir Ahmed library(ggplot2) # USed for plotting datalibrary(dplyr) # Used to extract columns in the datalibrary(rms) # Used to extract p-value from logistic modellibrary(aod)theme_set(theme_gray() ) # the default# logistic modelcovid <- read.csv(choose.files())labs <- attributes(covid)$labelssummary(covid)# collapse all missing values to NAcovid$x <- factor(covid$x,...
Negative Binomial Model
library(betareg)a <- read.csv(choose.files())# beta regression modelsummary(betareg(P_SPEEDING_ADJ ~ log(AVG_AADT), data=a))#negative binomial modelrequire(foreign)require(ggplot2)require(MASS)b<- a$P_SPEEDING_ADJc<- a$AVG_AADTd<- log(c)SPEEDING_AADT<- b*dmodel1= glm.nb(formula=SPEEDING_CRASH ~SPEEDING_AADT , data...
Sunday, September 27, 2020
Neural Network in R

library(neuralnet)# creating training data setTAWKIR=c(20,10,30,20,80,30)AHMED=c(90,20,40,50,50,80)Placed=c(1,0,0,0,1,1)# Here, you will combine multiple columns or features into a single set of datadf=data.frame(TAWKIR,AHMED,Placed)# load libraryrequire(neuralnet)# fit neural networknn=neuralnet(Placed~TAWKIR+AHMED,data=df,...
Saturday, September 26, 2020
Bar plot
plot(rf,$a xlib= " ", ylib=" ", main = "Error in different tree...
Friday, September 18, 2020
Random Forest plot

library(randomForest)# Load the dataset and exploredata1 <- read.csv(file.choose(), header = TRUE)head(data1)str(data1)summary(data1)# Split into Train and Validation sets# Training Set : Validation Set = 70 : 30 (random)set.seed(1000)train <- sample(nrow(data1), 0.7*nrow(data1), replace...
SHAP plot

#Part 1: library inputsuppressPackageStartupMessages({ library(SHAPforxgboost) library(xgboost) library(data.table) library(ggplot2)})#part 2:#file load and shap value calculationa <- read.csv(file.choose())X1 = as.matrix(a[,-1])mod1 = xgboost::xgboost( data =...
Text plot

## A blank plot to set up a coordinate system## Final result will be Figure 3-42> plot(0:10, 0:10, type = "n")## Some regular text as a baselinetext(2,10, "Regular text", pos = 4)## Set text larger and use serif familypar(list(cex = 2, family = "serif"))## Add some texttext(2,8, "Serif Family",...
Bi Plot for PCA

## Use datasets:USArrestsdata(USArrests) # Get datafilenames(USArrests) # View variable names## Scaled PCA using entire data.framepca1 = prcomp(USArrests, scale = TRUE)## Both following commands produce same PCA as previouspca2 = prcomp(~., data = USArrests, scale = TRUE)pca3 = prcomp(~ Murder...
Scree plot from PCA

## Use datasets:USArrestsdata(USArrests) # Get datafilenames(USArrests) # View variable names## Scaled PCA using entire data.framepca1 = prcomp(USArrests, scale = TRUE)## Both following commands produce same PCA as previouspca2 = prcomp(~., data = USArrests, scale = TRUE)pca3 = prcomp(~ Murder...
Monday, September 14, 2020
Tuesday, September 8, 2020
Subscribe to:
Posts (Atom)