# check that model is good fit or not
with(model, cbind(res.deviance = deviance, df = df.residual,
p = pchisq(deviance, df.residual, lower.tail=FALSE)))
## odds ratios and 95% CI ***********
exp(cbind(OR = coef(model), confint(model)))
# MORE SUMMARIES ###########################################
anova(model) # Coefficients w/inferential tests
coef(model) # Coefficients
hist(coef(model))
confint(model) # CI for coefficients
hist(confint(model))
resid(model) # Residuals case-by-case
hist(residuals(model),main="model COVID 19" ) # Histogram of residuals
plot(residuals(model), main="model COVID 19" )
logLik(model)
BIC(model)
PseudoR2(model)
predict(model)
hist(predict(model))
#peseudo r square
model$null.deviance
model$deviance
modelChi <- model$null.deviance - model$deviance
pseudo <- modelChi / model$null.deviance
pseudo
# Compute the pseudo p-value
Chidf <- model$df.null - model$df.residual
modelChi <- model$null.deviance - model$deviance
1 - pchisq(modelChi, Chidf)
#RSS(residual sum of square)
RSS <- c(crossprod(model$residuals))
RSS
#Mean square error
MSE <- RSS / length(model$residuals)
MSE
#Root MSE
RMSE <- sqrt(MSE)
RMSE
#Pearson estimated residual variance
sig2 <- RSS / model$df.residual
sig2
0 comments:
Post a Comment