library(psych)
all=read.csv(choose.files())
#Calculating_Cronbach's Alpha
covid_concern<- alpha(data.frame(all[c("CO2", "CO3", "CO5", "CO7")]))
attitude<- alpha(data.frame(all[c("SN3", "PBC1", "PBC2")]))
social_norm<- alpha(data.frame(all[c("CO4", "AT7", "SN1", "SN2", "PMO1")]))
perc_beh_control<- alpha(data.frame(all[c("AT2", "AT4", "AT5", "AT6")]))
perc_mor_obligation<-alpha(data.frame(all[c("CO8", "AT1")]))
####sem
library(lavaan)
library(semPlot)
#all=read.csv(choose.files())
model1<- '
# Structural model
CO=~CO2+ CO3 +CO5 +CO7
AT=~SN3+ PBC1+ PBC2
SN=~CO4+ AT7+ SN1+ SN2+ PMO1
PBC=~AT2+AT4+AT5+AT6
PMO=~CO8+AT1
# Covariance structure of exogenous variables
# New parameters (indirect effect)
#Regression
AT~CO
SN~CO
PBC~CO
PMO~AT
PMO~SN
PMO~PBC
'
fit1<- sem(model1, data=all)
fit1
summary(fit1, rsquare = TRUE,
fit.measures = TRUE,
standardized = TRUE)
fitMeasures(fit1)
semPaths(fit1, what="paths", whatLabels = "stand",
rotation = 2,
layout = "spring",
posCol = "black",
edge.width = 0.5,
style = "Lisrel",
fade = T,
edge.label.position = 0.55)
###############
# Extract the correlation matrix
all.cor <- cor(all[], method = "pearson", use = "pairwise.complete.obs")
all.cor
# Correlogram
corrplot(all.cor, order = "hclust",
tl.col = "black", tl.srt = 80,
addCoef.col = "black",
number.cex = 0.8,
cl.cex = 1,
tl.cex = 0.8)
library(corrplot)
library(RColorBrewer)
#library(psych)
#corPlot(data, cex =1.2, main="",
# cex.lab = 1.2,
# cex.axis =1.2,
# cex.main = 1.2,
# cex.sub = 1.2)
library(psych)
cor.plot(all.cor,numbers=TRUE,colors=TRUE,
n=51,main=NULL,labels=NULL,
cex =1,
cex.lab = 1,
cex.axis =1, #right side level
cex.main = 1,
cex.sub = 1)
0 comments:
Post a Comment