#Tawkir codehub
data<-read.csv(file.choose()) #to input data
summary(data) #to show all data variables
describe(data) #to show mean and median for numeric data
head(data) #to show some column and variable names
#Rename one column name
colnames(data)[colnames(data)=="lining"]<- "Living"
#Rename all column names
colnames(data)<- c("Age", "Income", "Gender")
#Rename some column names
colnames(data)[colnames(data) %in% c("CO","PMO")]
#Replace value or character in a column
data$Gender[data$Gender=="Male"]<- "2"
data$Gender[data$Gender=="Female"]<- "1"
##ingeneral variable convert for all data
data(data=="NA")<- "0" #Error handeling
#Percentage and frequenty
agef<-table(data$Age) #frequenty table
agep<-prop.table(table(data$Age)) #percentage table
barplot(agep, ylab="%")
table(data$Living)
data$Living[data$Living=="Megacity"]<- "1"
data$Living[data$Living=="City"]<- "2"
data$Living[data$Living=="Town"]<- "2"
data$Living[data$Living=="Village"]<- "2"
table(data$Age)
data$Age[data$Age=="Young"]<-"1"
data$Age[data$Age=="Adult"]<-"2"
data$Age[data$Age=="Old"]<-"3"
table(data$Education)
data$Education[data$Education=="Secondary"]<-"1"
data$Education[data$Education=="Tertiary level (college and university degree)"]<-"2"
table(data$Income)
data$Income[data$Income=="Low"]<-"1"
data$Income[data$Income=="Middle"]<-"2"
data$Income[data$Income=="Higher-middle"]<-"3"
data$Income[data$Income=="Higher"]<-"4"
#convert character to number
data$Living<-as.character(data$Living)
data$Age<-as.character(data$Age)
data$Gender<-as.character(data$Gender)
data$Education<-as.character(data$Education)
data$Income<-as.character(data$Income)
data$Living<-as.numeric(as.character(data$Living))
data$Age<-as.numeric(as.character(data$Age))
data$Gender<-as.numeric(as.character(data$Gender))
data$Education<-as.numeric(as.character(data$Education))
data$Income<-as.numeric(as.character(data$Income))
data$Living<-as.factor(data$Living)
data$Age<-as.factor(data$Age)
data$Gender<-as.factor(data$Gender)
data$Education<-as.factor(data$Education)
data$Income<-as.factor(data$Income)
#create new data for trial
female<- ifelse(all$Gender=="Female", 1,0)
male<- ifelse(all$Gender=="Male", 2,0)
young<- ifelse(all$Age=="Young",1,0)
describe(data)
summary(data)
colnames(data)
library(psych)
#Calculating_Cronbach's Alpha
demo<- alpha(data.frame(data[c("Living", "Age", "Gender",
"Education", "Income" )]))
#save the change file for future work
write.csv(data,"E:\\planning''''''''''''''''''''''''\\SEM C19 model sir\\chang variable name main\\CODE\\Covid_main.csv", row.names = FALSE)
0 comments:
Post a Comment